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Introduction 

When a gas or a liquid in drop form flows through a granular layer or bed, the particles 
are acted upon by hydrodynamic forces which lead to a considerable change in the stressed 
state of the system by comparison with the static situation characterizing the same bed in 
the absence of a flow. For certain modes of flow, in particular, tensile normal stresses 
may appear in the bed, producing local breaks in the continuity of the bed and its actual 
breakdown as a loose, continuous medium. The particles then lose regular contacts with one 
another and pass into a suspended ("fluidized") state. Despite the large number of empiri- 
cal investigations which have been made into various kinds of fluidized systems and the wide 
practical use of fluidization techniques in various branches of industry, the fundamental 
question as to the reasons and conditions underlying the passage of a particle bed into the 
fluidized state and as to the possible mechanisms of such a transition is still far from a 
satisfactory solution [1-6]. It is therefore essential to construct a clear physical model 
of initial fluidization so as to be able to explain the observed qualitatively differing 
pictures of the generation of the fluidized state from a unified point of view. 

The problem of the transition of a granular bed into the fluidized state was considered 
in [7, 8] as that of the limiting equilibrium of loose material withstanding only compres- 
sive or slight (not exceeding the critical cohesive stress in modulus) tensile stresses. 
Actually the potential possibility of discontinuities appearing in the granular material 
does not necessarily signify its true fluidization, since the transition into the fluidized 
state also involves overcoming the forces of boundary friction, which was not taken into 
account in the earlier papers [7, 8]. The more realistic problem of the initial fluidiza- 
tion of a granular bed in the presence of slight friction at the walls was considered in [9], 
in which for the first time allowance was made for the possible existence of residual stress- 
es due to the initial irreversible deformation of the granular bed, not vanishing when the 
weight of the bed was fully compensated by hydraulic forces. A model of the transition of 
a stationary granular bed into the fluidized state, based on the use of approximate relation- 
ships describing the stresses in the static state [I0], was proposed in [ii]; this facili- 
tated a qualitative study of possible fluidization mechanisms both for ideally loose media 
and for media incorporating cohesion. In this paper we shall consider such mechanisms in 
more detail for the case of a granular bed fluidized by a rising flow of liquid in systems 
with vertical walls. 

i. Model Representations 

Let us consider a plane or axisymmetrical cylindrical apparatus filled with a granular 
bed. We regard the upper surface of the bed as plane and free from stress; H is the depth 
of the bed; R is the half-width of the plane or the radius of the cylindrical bed. The z' 
axis is directed vertically downward along the symmetry axis; the x' axis is normal to it; 
and the origin of coordinates lies on the free surface of the bed. 

Let us introduce the dimensionless quantities 

x = x ' / R ,  z = z ' / R ,  h = H / R .  (1.1) 
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The equilibrium equations in the variables of Eq. (i.i) are written in the form 

a~lax § a~!az = o, a~/ax + k~lx +aazlaz = r = ?R,  ( l ,  2) 

w h e r e  a x a n d  a z a r e  t h e  h o r i z o n t a l  a n d  v e r t i c a l  n o r m a l  s t r e s s e s  (we u s e  t h e  r u l e  o f  s i g n s  
n o r m a l l y  e m p l o y e d  i n  t h e  m e c h a n i c s  o f  l o o s e  m e d i a ,  i n  w h i c h  c o m p r e s s i v e  s t r e s s e s  a r e  r e g a r d e d  
as positive); T is the tangential stress; y is the effective specific gravity of the loose 
medium; and the parameter k equals zero for the plane and unity for the axisymmetrical prob- 
lem. Motion of the liquid inside the bed is regarded as absent. 

In conformity with the representations employed in [9-11], in order to characterize 
the properties of the system we introduce the parameters ~, • ~, and a c. The first of these 
is introduced on the basis of experiments relating to the one-dimensional homogeneous com- 
pression (for example, in the z direction) of a loose sample bounded by solid walls normal 
to the transverse directions; it represents the proportionality factor between the developing 
transverse and applied longitudinal stresses. The quantity • depends on the microscopic 
characteristics of the particles of the medium, their type of packing, and also on the irre- 
versible deformations accumulated by the system [9, i0]. If the structure of the granular 
bed is uniform, ~ may be regarded as a constant characterizing the initial state of the bed 
and depending on the history of the latter (different dynamic actions, vibrations, etc.). In 
the presence of substantial irreversible deformations the value of ~ may be considerably 
greater than its minimum value of ~e, which also depends on the type of packing and the prop- 
erties of the particles, but corresponds to the reversible deformation of the medium in the 
linear-elasticity range (for example, that encountered in the well-known Hertz problem). 
Clearly, in a state of limiting equilibrium the parameters ~ and • maY be expressed in terms 
of the corresponding angle of internal friction of the medium. 

At the walls of the apparatus we regard the limiting condition for the tangential 
stress, i.e., in effect the condition for the forces of boundary friction, as being satis- 
fied. This "saturation" of the boundary friction is a result of the natural settling of the 
medium, for example, under the influence of its own weight [i0]. Thus, a condition corres- 
ponding to the Coulomb law should be satisfied at the wall: 

ITI = "  ~ x ,  ( i .  3 )  

where a is the tangent of the effective boundary-friction angle. 

Finally the critical cohesive stress a c characterizes the effective cohesion of the 
medium and represents the modulus of the maximum tensile stress capable of being withstood 
by the medium without the appearance of discontinuities [9, ii]. For real fluidized systems 
the appearance of a nonzero stress a is usually associated with the adhesion of the parti- 

C 
cles in the medium (especially substantial for fine particles [12]), the electrification of 
the particles or their electromagnetic interactions [13, 14], and the conglomeration of the 
particles by virtue of the formation of liquid menisci over their contact areas [15]. For 
simplicity, we neglect the possible adhesion of the particles to the wails or the bottom of 
the apparatus. 

The use of Eq. (1.3) and the condition of proportionality between the normal stresses 
under conditions of uniform loading makes the system (1.2) statically determinate. For a 
bed with a free upper boundary z = 0 the approximate solution takes the form [i0] 

~ = [r/(~ + k ) = l [ / ( z )  - -  x ~ ( z ) ] ,  ~ = [r/(~ + k)• 
T = I t / 0  + k)][/(z) ~(z)]x. ( l . 4 )  

The  f o r m  o f  t h e  f u n c t i o n s  o f  z i n  ( 1 . 4 )  d e p e n d s  on  t h e  s i g n  o f  t h e  p a r a m e t e r  

T = i - - 2 ( i  § 2 1 5  ~. ( 1 . 5 )  

In order to be specific we shall confine attention to situations in which T > 0; we 

then have [i0] 

/ (z) = i (i + ~)~ e-~,z  H- (~ - -  ~)~ e - x ~ ,  v ~ - -  T, 4v T 

I - - , ;3  ( -x ,~  e -~"z ) ,  ~,I I - -  ~ ~o I + 
q D ( Z ) = T ~ e  - -  - -  ~ ,  . =  

( 1 . 6 )  
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Equations (1.4)-(1.6) describe the static stressed state of the granular bed in the ab- 
sence of a flow of liquid. 

Now let the bed be penetrated by a uniform upward-directed stream at a rate of flow Q, 
the force of hydraulic interaction referred to the particles in unit volume being g(Q) - a 
large number of empirical relationships [3-6] have been devised for the calculation of g(Q). 
The flow of liquid leads to a reduction in the apparent specific gravity of the loose medium, 
which becomes equal to y -- g(Q), and to a corresponding release of the medium from existing 
stresses. This stress release has the effect that the limiting condition for the stresses 
ceases to be satisfied even at the walls of the apparatus and the corresponding problem 
ceases to be statically determinate. 

In order to determine the state of stress so developing we make use of a hypothesis ac- 
cording to which the additional deformation due to the hydraulic forces does not produce any 
change in the structure of the medium, i.e., it is completely reversible. This hypothesis 
is excellently supported by experiments based on measuring the electrical resistance of gran- 
ular beds for various values of Q. The dependence of the resistance on Q is extremely weak 
[5] right up to the value of Qo corresponding to the onset of fluidization~ i.e.~ it re- 
flects a comparatively slight reduction in the areas of contact between contiguous particles 
as a result of elastic deformations, but no substantial change in the structure of the medi- 
um. Thus in order to relate the additional (vertical and horizontal) normal stresses due 
to the hydraulic forces we must use the value of Ze corresponding to reversible elastic de- 
formation. For the stressed state of a granular bed penetrated by a flow of liquid we thus 
obtain the following expressions: 

~ : [ (•  - -  •  + k ) •  - -  [(F - -  G) / ( i  + k)u]x2?(z), G = Bg(Q), 
(1.7) 

~ = [ ( r  - 6 ) / ( i  + k ) •  ~ = l ( r  - -  ~ ) / ( i  + k ) ] l / ( z )  - -  ~ ( z ) l x ,  

where as before f(z) and ~(z) are defined in (1.6). Equations (1o7) are only meaningful in 
the case 

Q ~ Qo, ? ~ g(Qo). ( 1 . 8 )  

Although when Q = Qo the vertical normal and tangential stresses vanish identically, 
the bed retains a "residual" horizontal stress 

0 ( • 2 1 5  
(s~ - (l  + k) ~ ! (z) ,  ( ! ~  9 )  

depending, as already indicated, on the characteristics of the initial state of the granular 
bed, and only vanishing when the initial packing is sufficiently "loose," i.e., when there 
are no irreversible deformations and ~ = • The residual stress creates thrust forces at 
the walls, these being retained even after complete neutralization of the weight of the par- 
ticles by the hydraulic forces. The origin of the thrust forces is discussed in [5] in con- 
nection with their influence on the transition into the fluidized state. 

When the rate of flow Q exceeds the value of Qo from (1.8), the effective force acting 
on the particles of the granular bed is directed upward. The action of this force promotes 
the development of breaks in the continuity of the bed, the disruption of stable contacts 
between the particles, and the transition of the particles into the fluidized state~ How- 
ever, the existing forces of boundary friction, substantial in the presence of the residual 
stress (1.9), prevent the decomposition of the bed and the actual suspension of the parti- 
cles. Hence in order to analyze the conditions governing the transition into the fiuidized 
state we must give explicit consideration to the stresses for Q > Qo; it is convenient to do 
this separately for media with and without cohesion~ 

2. Fluidization of an Ideally Free-Running Granular Bed 

Let us first assume that there is no cohesion so that ~c = O. At Q = Qo the granular 
bed decomposes essentially into individual noninteracting horizontal layers in which the res- 
idual stresses (1o9) continue to act. For a slight increase in Q, when the volume force 
g(Q) - y is directed upward but is still not too great, the equilibrium of the majority of 
such layers is ensured by the appearance of boundary-friction forces directed downward and 
restraining the material from motion in the direction of the flow. While these forces remain 
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lower than the limiting values defined in (i. 3) with o x from (1.9), the individual horizontal 
layers may be regarded as existing under identical conditions, and there are no physical rea- 
sons why interaction should occur between them or a change occur in the stresses (1.9). 
Thus in the lower part of the granular bed in which the residual stresses are fairly large 
the following equations are satisfied: 

(Yx = (~ ,  Oqz/OZ = 0 ( z ,  (x) < z < h), ( 2 .  l )  

where ze(x) is a certain surface dependingonQ as a parameter. By using (2.1) in the corres- 
ponding equilibrium equations we obtain the following for the tangential stresses in the 
lower part of the bed: 

T = - - [ ( G  - -  F ) / ( t  ~- k)]x  (z > z , (x)) ,  ( 2 . 2 )  

t h e  n e g a t i v e  s i g n  i n  ( 2 . 2 )  c o r r e s p o n d i n g  t o  t h e  f o r c e  o f  b o u n d a r y  f r i c t i o n  d i r e c t e d  d o w n w a r d .  

In the upper part of the granular bed, in which the residual stresses are weak, the 
boundary friction is insufficient to compensate the volume force and hold the material in a 
state of equilibrium, i.e., this part of the bed passes into the fluidized state. Thus the 
surface z,(x) defines the boundary between the stationary and fluidized parts of the bed, 
in which the quantity z w -- z,(1) has to be determined from the condition that the stress 
(2.2) at the wall should coincide with the limiting value calculated by substituting (1.9) 
into (1.3). This gives an equation for Zw: 

/ (Zw) = g (Q) -- ~ ~ . ( 2 . 3 )  
1, z -- ~r 

Equation (2.3) has a solution 0 S z w ~ h, if Q satisfies the inequality Qo ~ Q ~ Qh, 
where Qh is determined from 

(2.4) 

If ~ = ~e' i.e., residual stresses and strains are completely absent, then Qh = Qo, 
and all parts of the granular bed are fluidized at the same time when the rate of flow Q 
reaches the so-called "minimum fluidization velocity" Qo defined in (1.8). This is the first 
of the possible fluidization mechanisms, for which the dependence of the liquid pressure drop 
in the bed Ap on Q has an "ideal" character (curve OABCDE in Fig. i). For Q > Qo the value 
of Ap is constant and equal to the weight of the loose bed per unit area of its cross sec- 
tion yH = rh. 

If, •215 then fluidization takes place gradually, starting from the upper surface of 
the bed, and lies within the range (Qo, Qh) of the rate of flow Q. For Q = Qh and Q = Qo 
the fluidization "front" z,(x) coincides, respectively, with the lower and upper surfaces of 
the granular bed. The function z,(x) and the vertical normal stress in the lower part of 
the bed may be determined from the conditions that the tangential and normal stresses should 
vanish at this front: 

nxa  x-Jr- nzT = O, nxT @ nzg z = 0 (z = z , (x) ) ,  ( 2 . 5 3  

where n is the unit vector of the normal. Allowing for (1.9) and (2.1)-(2.3), from the 
first equation of (2.5) and the relation nx/n z =--dz,/dx, we have 

z, (x) 
j" l (z) dz = ~ g ( o ) -  ~ x (1 - -  x2), 

2 ? u - - u  e 
Z%U 

which enables us to find z,(x) for various Q. Using the expressions for f(z) and z from 
(1.6) and (2.3), we may write down simple asymptotic representations respectively ~olding 
true for small and large z,(x). In particular, at great depths, beneath the free surface, 
the curve z,(x) approaches a parabola. 

From the second equation of (2.5) we obtain 

=x g (Q) - ~ G-- r ~ (z > z, (x)). 
~z ~ - - •  7 t ~ k  f (z , )  
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Neglecting possible distortions of the flow of liquid close to the curved interface 
z,(x) between the fluidized and stationary parts of the bed, for the pressure drop in the bed 
we obtain 

Ap --  rZo + G(h - -  Zo) > r h ,  z,,(Q) = z ,  (0). 

Thus the pressure drop in the range (Qo, Qh) of the flow of liquid is greater than the 
weight of the loose layer. The fluidization curve &p(Q) has a maximum at a certain Q = Qm' 
Qo < Qm < Qh (curve OAMCDE in Fig. i), the section MC (representing the fall in pressure) 
being the steeper, the greater the value of Qh, i.e., the higher the bed. The maximum pos- 
sible value Q= of Qh is reached in a bed of infinite height, and it follows from (1.6) and 
(2.4) that 

~(Q~) = v(2 - • 

In this case the fluidization curve has the shape of curve OAFDE in Fig. !. (For convenience 
we have not shown the differences between the initial sections OA of the different curves in 
Fig. i, and all the curves are referred to the same ordinate Fh.) 

In a bed of finite height the surface z,(x) moves continuously downward with increasing 
Q until its continuity is broken by touching the lower boundary z = h. For zo ~ h (but z w < 
h) the function z,(x) describes the surface of the stagnant zones formed at the walls within 
a comparatively narrow range of flow rates slightly smaller than Qh" This gradual fluidiza- 
tion of the granular bed constitutes the second possible mechanism of initial f!uidization. 

Clearly, it is precisely this mechanism which is encountered most frequently in prac- 
tice. The pressure maximum on the corresponding fluidization curve was earlier explained 
as being due to the loss of flow energy in accelerating the particles during the change in 
the structure of the layer [i] or in overcoming the cohesive forces [2, 4-6], the inhomogene- 
ity of the initial packing of the bed and the hydraulic forces in the latter [3, 5], and so 
on. It follows from the foregoing analysis that these factors play no serious part in the 
creation of the maximum, the appearance of which is rather due to the presence of residual 
stresses. The latter possibility was intuitively admitted in [5]. 

The relative deviation of the real fluidization curve from the ideal shape increases 
sharply with increasing • and h, so that the maximum pressure drop may greatly exceed the 
effective weight of the loose granular bed. These conclusions are excellently supported, 
for example, by the experiments on magnesium oxide particle beds described in [16]. 

For lower beds the deviations of the liquid flow from uniformity may become substantial 
on account of the curvature of the fiuidization front and the difference between the hydrau- 
lic resistances of the particles in the stationary bed and in the fluidized state, and so 
may the random inhomogeneities in the packing of the bed. Analysis shows that both these 
circumstances promote the accelerated fluidization of the central regions of the bed by com- 
parison with the peripheral regions, and may, under favorable conditions, lead to the forma- 
tion of channels filled only with the suspended particles, and to the preferential flow of 
the liquid through such channels, with the formation of stagnant zones close to the walls. 
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3. Fluidization in the Presence of Cohesion 

When the critical cohesive stress o c differs from zero, the condition for the breakdown 
of continuity in the granular bed and the appearance of breaks in the latter takes the form 

am ~ - -  ac, (3.1) 

where ~ is the least of the principal normal stresses in the bed. We see from (3.1) and 
expressions (1.7) for the stresses that in this case fluidizati0n can only begin when the 
flow of liquid reaches a certain value exceeding the minimum fluidization velocity. 

As before, when Q > Qo a stressed state is created in the lower part of the granular 
bed, this state being governed by Eqs. (2.1) and (2.2). However, in the case under consid- 
eration the upper part of the bed is not necessarily in the fluidized state. For the sus- 
pension of the particles, in fact, it is essential to satisfy (3.1), which is physically 
unrealistic if the quantity Q - Qo, although positive, is fairly small. Thus over a certain 
range of flowvalues starting from Qo a stressed state satisfying the limiting condition 
(1.3) at the wall will be created in the region adjacent to the upper surface of the bed. 
In this case the function z,(x) describes the shape of the interface between the region with 
the foregoing stressed state and the region corresponding to Eqs. (2.1) and (2.2), the posi- 
tion of z w (the point of intersection of this surface with the wall) being given by Eq. 
(2.3) as before. 

On the basis of the model of Sec. l, we write the problem of determining the stressed 
state in the region above z = z,(x) in the form 

o% ~ o~ k~ o% G + F < O, 
-~-~ + ' ~ f  = O ' w + - V +  o~ - 

( x -  ~ )  r 
ax = ~ ~ f (z) -l- ax (z < z,  (x)), ( 3 . 2 )  

/ ~ ,  ~ > 0 (x = 1), c~ = •  (z = 0), 
= (0, ~ < 0  

~ = ~ ,  % =0 (z -O) .  

Here we have taken account of Eq. (1.9) for the residual stresses (which simplifies our 
assumption as to the absence of cohesion with the walls) and also the fact that the hydraulic 
forces lead to a reversible elastic deformation of the free-running medium without disrupting 
its structure. It may be shown that the solution of Eq. (3.2) takes the form 

t d ~  2 
~ = %q~ (z) -~ 2 (1 + k) ~ x ,  

= [1/(1 q- k)](--G q- f - -  d f f O / d z ) x ,  c ~  = O p ( z ) ,  

(3.3) 

in which the function #(z) is found from the solution of the simple linear problem which fol- 
lows from (3.2) on substitution of (3.3) into the latter. In view of their cumbersome nature 
we shall not write out the explicit representations of this function or the stresses in the 
region z < z,(x), confining ourselves subsequently to a qualitative analysis of the solution. 

The unknown shapes of the surface z,(x) and the vertical stress in the region z > z,(x) 
may simply be found from the conditions of continuity of the tangential and normal stresses 
on this surface, which in the present case replace conditions (2.5) and Eqs. (2.3) for z w. 
In this way we obtain the following formal relationships, enabling us to complete the solu- 
tion of the problem: 

d z ,  _ "~+ - -  ~ - -  , Z.(I) = z,~, 

(3.4) 

The right-hand sides in Eqs. (3.4) may be regarded as already known; the stresses at 
z = z, -- 0 and z = z, + 0 are indicated by upper indices "--" and "+," respectively. 
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From the qualitative point of view, the stressed state so arising is illustrated in 
Fig. 2, which shows the characteristic dependences of'the vertical stress at x = 0 on the 
coordinate z corresponding to different Q (the curves of Fig. 2 correspond to Qs > Q" > Q' > 
Qo). In the region z < zo = z,(0) this stress falls monotonically to a certain limiting 
value --ao; in the region z > zo it is independent of z and equal to --ao. The quantity Go 
increases monotonically with increasing flow Q, on which it depends as a parameter. It is 
clear that, on account of Eq. (3.1), physically realistic states only occur for such stressed 
states as satisfy the condition Go < a c. When the flow reaches a certain critical value Qs 
at which the tensile stress oo becomes equal to Oc, the continuity of the granular bed is 
infringed; close to the point (0, z s) a small horizontal break appears. The latter leads, 
first, to the partial relief of stresses along the borders of the break, i.e., above and 
below it, and, secondly, to the ordinary stress concentration at its outer contour, which pro- 
motes a further increase in the surface area of the break until it passes into the region 
close to the wall. 

From the phenomenological point of view the foregoing process is extremely like the 
well-known picture of rapid crack propagation in a brittle material. As a result of this, 
a "piston" is separated from the granular bed, initiating motion in the direction of the 
suspending flow. The height of this piston is determined by the quantity z s = zo correspond- 
ing to the value of Qs' i.e., for determining z and Qs we have a formal system consisting 

8 
of the first equation of (3.4), with z w from (2.3), and the equation 

~(~) = -~ 

After the separation of the first piston, on further increasing the flow further pistons 
are separated from the bed, their heights in general being different from one another~ 

This picture of piston formation represents the third possible mechanism of initial 
fluidization. This mechanism is actually realized if the bed is fairly high, i.e., z s < h. 
In the opposite case, z s > h, for a certain Qs' < Qs, at which the corresponding value of zo 
is comparable with h, the whole bed is detached from the lattice supporting it, i.eo~ flu- 
idization is effected by a fourth possible mechanism. 

Subsequently the particles falling from the lower surface of the bed separated from the 
lattice in this way either reform the stationary layer by gradually accumulating on the lat- 
tice or else pass directly into the suspended state, which corresponds to fluidization 
starting from the lower surface of the bed. The first process occurs if the initially bro- 
ken adhesive bonds between the particles are restored sufficiently rapidly after the parti- 
cles come into contact again. The second process occurs when the relaxation ti~e of the 
bonds in question is great, i.e., the bonds are broken irreversibly. 

We note that all the fluidization mechanisms discussed are in fact observed experiment- 
ally. The most complete phenomenological description of the mechanisms involved and a dis- 
cussion of the factors leading to the practical realization of one version or another are to 
be found in [3]. 

In order to secure a further proof of the model we set up some special experiments (in 
conjunction with E. N. Prozorov) in which loose granular beds consisting initially of alter- 
nating horizontal layers of differently colored particles were fluidized. The boundary fric- 
tion was varied by sticking emery paper of various grades to the walls of the cylindrical 
apparatus, while the degree of initial consolidation of the charge was varied by holding it 
for a long time under an additional load. The instantaneous state of the bed after gradually 
or abruptly increasing the rate of flow was recorded by rapidly excluding the gas and then 
roasting the deposited layer in a muffle furnace. The character of the transition into the 
fluidized state was judged from a study of the microsections of the sintered sample and 
from the fluidization curves recorded. The results of these experiments qualitatively sup- 
ported all the main conclusions of the proposed model. Thus the height and extent of the 
peak on the fluidization curve increased with intensification of the initial packing of the 
bed and also with increasing height and boundary friction; the shape of the boundaries be- 
tween the fluidized and stationary parts of the bed was similar to that calculated above; 
stagnant zones were formed at the walls when the central part of this boundary passed to the 
gas-distributing lattice, and so on. 
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TWO-DIMENSIONAL EFFECTS WITH THE FLOW OF A REACTIVE LIQUID 

WITH PROPERTIES VARYING WITH THE DEPTH OF THE CONVERSION 

D. A. Vaganov UDC 532,542:660.095~ 

During the course of chemical conversions, the mechanical properties of a reacting liq- 
uid can vary. Thus, pol~merization processes are usually accompanied by a considerable 
increase in the viscosity. This leads to the appearance of specific hydrodynamic effects. 
Some of these are considered in the present article using the example of the simplest two- 
dimensional problem. 

w The article considers the steady-state laminar flow of a reactive Newtonian liquid 
in a tube. The viscosity V and the density p of the liquid, during the course of chemical 
conversions, vary from the values ~ = ~o and p = Po to the values ~ = ~i and p = pl for 
total conversion. 

We shall assume that the temperature of the liquid is constant and that the effect of 
diffusion can be neglected. In this case, at a given point, the depth of the conversion and 
the mechanical properties of the liquid are determined only by the time t at which the liquid 
reaches the given point. The dependences ~ = ~(t) and p = p(t) are the same as in the case 
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